Check out our latest project ✨ OpenChapter.io: free ebooks the way its meant to be 📖

EZ Stats

An asset by aaron-tundrapeaksstudios
The page banner background of a mountain and forest
EZ Stats hero image

Quick Information

0 ratings
EZ Stats icon image
aaron-tundrapeaksstudios
EZ Stats

EZ Stats simplifies your statistics needs by offering the following global functions via a sole, auto-loaded singleton script:sanitize() - Ingests an Array with elements of any type, sanitizes non-integers/floats, and returns an Array[float]mean() - Calculates the statistical mean (average) of a datasetmedian() - Calculates the statistical median of a datasetspread() - Calculates the statistical range of a datasetminima() - Calculates the statistical minima of a datasetmaxima() - Calculates the statistical maxima of a datasetvariance() - Calculates the mean-based variance of a datasetstandev() - Calculates the mean-based standard deviation of a datasetmad() - Calculates the median absolute deviation of a datasetall() - Calculates all summary statistics above and returns them in a Dictionary

Supported Engine Version
4.3
Version String
1.0
License Version
MIT
Support Level
community
Modified Date
10 months ago
Git URL
Issue URL

EZ Stats

EZ Stats simplifies your statistics needs by offering the following global functions via a sole, auto-loaded singleton script:

sanitize() - Ingests an Array with elements of any type, sanitizes non-integers/floats, and returns an Array[float]

mean() - Calculates the statistical mean (average) of a dataset

median() - Calculates the statistical median of a dataset

spread() - Calculates the statistical range of a dataset

minima() - Calculates the statistical minima of a dataset

maxima() - Calculates the statistical maxima of a dataset

variance() - Calculates the mean-based variance of a dataset

standev() - Calculates the mean-based standard deviation of a dataset

mad() - Calculates the median absolute deviation of a dataset

all() - Calculates all summary statistics above and returns them in a Dictionary

Badges

README MIT License README GitHub README AssetLib README Godot 4.x README Godot GDScript

Installation

Install from the Godot editor's AssetLib

  1.) Click on "AssetLib" at the top-middle of the editor
  2.) Search for "EZ Stats" without double-quotes
  3.) Click on "EZ Stats"
  4.) Click "Download"
  5.) Click "Install"
  6.) Navigate to Project -> Project Settings -> Plugins and check the "On" box 
  7.) Call the EZ Stats functions anywhere in the rest of your project's GDScript scripts via:
    7.1.) EZSTATS.sanitize()
    7.2.) EZSTATS.mean()
    7.3.) EZSTATS.median()
    7.4.) EZSTATS.spread()
    7.5.) EZSTATS.minima()
    7.6.) EZSTATS.maxima()
    7.7.) EZSTATS.variance()
    7.8.) EZSTATS.standev()
    7.9.) EZSTATS.mad()
    7.10.) EZSTATS.all()

Install from the .zip file

  1.) Download and un-zip the addons folder from this repo
  2.) If your project doesn't yet have an addons folder, paste the addons folder as-is into the root of res://
    2.1.) res:// structure should be res://addons/ez_stats/$contents
    2.2.) If you already have an addons folder, just paste the ez_stats folder into it
  3.) Navigate to Project -> Project Settings -> Plugins and check the "On" box
  4.) Call the EZ Stats functions anywhere in the rest of your project's GDScript scripts via:
    4.1.) EZSTATS.sanitize()
    4.2.) EZSTATS.mean()
    4.3.) EZSTATS.median()
    4.4.) EZSTATS.spread()
    4.5.) EZSTATS.minima()
    4.6.) EZSTATS.maxima()
    4.7.) EZSTATS.variance()
    4.8.) EZSTATS.standev()
    4.9.) EZSTATS.mad()
    4.10.) EZSTATS.all()

Usage

EZSTATS.sanitize()

  EZSTATS.sanitize(sources: Array) -> Array[float]

  ##e.g. Sanitize a sample Array of integers and floats:

  var sample_source: Array = [1, 2.5, 3, false, "test"]
  var sanitized_source: Array[float] = EZSTATS.sanitize(sample_source)
  print(str(sanitize_source)) ##Will show [1.0, 2.5, 3.0]
Parameters Type Description
sources Array Required. Source data values in an Array
Returns Type Description
sanitized Array[float] A float array containing all sanitized, integer or float only, values

EZSTATS.mean()

  EZSTATS.mean(data: Array[float], dof: float) -> float

  ##e.g. Find the mean of a sample sanitized source array

  var sanitized_source: Array[float] = [1, 2.5, 5, 10]
  var mean: float = EZSTATS.mean(sanitized_source, 0.001)
  print(str(mean)) ##Will return 4.625
Parameters Type Description
data Array[float] Required. Sanitized source data values in an Array[float]
dof float Required. Degrees of Freedom, 10^n-th place
Returns Type Description
mean float A float representative of the mean of the data values

EZSTATS.median()

  EZSTATS.median(data: Array[float], dof: float) -> float

  ##e.g. Find the median of a sample sanitized source array

  var sanitized_source: Array[float] = [1, 2.5, 5, 10]
  var median: float = EZSTATS.median(sanitized_source, 0.01)
  print(str(median)) ##Will return 3.75
Parameters Type Description
data Array[float] Required. Sanitized source data values in an Array[float]
dof float Required. Degrees of Freedom, 10^n-th place
Returns Type Description
median float A float representative of the median of the data values

EZSTATS.spread()

  EZSTATS.spread(data: Array[float], dof: float) -> void

  ##e.g. Find the spread of a sample sanitized source array

  var sanitized_source: Array[float] = [1, 2.5, 5, 10]
  var spread: float = EZSTATS.spread(sanitized_source, 0.1)
  print(str(spread)) ##Will return 9
Parameters Type Description
data Array[float] Required. Sanitized source data values in an Array[float]
dof float Required. Degrees of Freedom, 10^n-th place
Returns Type Description
mean float A float representative of the spread of the data values

EZSTATS.minima()

  EZSTATS.minima(data: Array[float], dof: float) -> void

  ##e.g. Find the minima, smallest value, of a sample sanitized source array
  
  var sanitized_source: Array[float] = [1, 2.5, 5, 10]
  var minima: float = EZSTATS.minima(sanitized_source, 0.1)
  print(str(minima)) ##Will return 1
Parameters Type Description
data Array[float] Required. Sanitized source data values in an Array[float]
dof float Required. Degrees of Freedom, 10^n-th place
Returns Type Description
mean float A float representative of the minima data value

EZSTATS.maxima()

  EZSTATS.maxima(data: Array[float], dof: float) -> void

  ##e.g. Find the maxima, largest value, of a sample sanitized source array
  
  var sanitized_source: Array[float] = [1, 2.5, 5, 10]
  var maxima: float = EZSTATS.maxima(sanitized_source, 0.1)
  print(str(maxima)) ##Will return 10
Parameters Type Description
data Array[float] Required. Sanitized source data values in an Array[float]
dof float Required. Degrees of Freedom, 10^n-th place
Returns Type Description
mean float A float representative of the maxima data value

EZSTATS.variance()

  variance(data: Array[float], dof: float) -> float

  ##e.g Find the variance of a sample sanitized source dataset

  var sanitized_source: Array[float] = [1, 2.5, 5, 10]
  var variance: float = EZSTATS.variance(sanitized_source, 0.0001)
  print(str(variance)) ##Will return 15.5625
Parameters Type Description
data Array[float] Required. Sanitized source data values in an Array[float]
dof float Required. Degrees of Freedom, 10^n-th place
Returns Type Description
variance float A float representative of the data's variance

EZSTATS.standev()

  standev(data: Array[float], dof: float) -> float

  ##e.g Find the standard deviation of a sample sanitized source dataset

  var sanitized_source: Array[float] = [1, 2.5, 5, 10]
  var standev: float = EZSTATS.standev(sanitized_source, 0.01)
  print(str(standev)) ##Will return 3.54
Parameters Type Description
data Array[float] Required. Sanitized source data values in an Array[float]
dof float Required. Degrees of Freedom, 10^n-th place
Returns Type Description
standev float A float representative of the data's standard deviation

EZSTATS.mad()

  mad(data: Array[float], dof: float) -> float

  ##e.g Find the median absolute deviation of a sample sanitized source dataset

  var sanitized_source: Array[float] = [1, 2.5, 5, 10]
  var mad: float = EZSTATS.mad(sanitized_source, 0.001)
  print(str(mad)) ##Will return 2.875
Parameters Type Description
data Array[float] Required. Sanitized source data values in an Array[float]
dof float Required. Degrees of Freedom, 10^n-th place
Returns Type Description
mad float A float representative of the data's median absolute deviation

EZSTATS.all()

  all(sources: Array, dof: float) -> Dictionary

  ##e.g Calculate all summary statistics

  var sanitized_source: Array[float] = [1, 2.5, 5, 10]
  var all: Dictionary = EZSTATS.all(sanitized_source, 0.01)
  print(str(all)) ##Will return all values rounded to the 0.01 (hundredths) place
  ##{
        ##"Mean": 4.63,
        ##"Median": 3.75,
        ##"Spread": 9.0,
        ##"Minima": 1.0,
        ##"Maxima": 10.0,
        ##"Variance": 15.56,
        ##"Standev": 3.54,
        ##"Mad": 2.88
    ##}
Parameters Type Description
sources Array Required. Source data values, will be sanitized for you
dof float Required. Degrees of Freedom, 10^n-th place
Returns Type Description
results Dictionary A dictionary containing all summary statistics

Documentation

Acknowledgements

Authors

Tundra Peaks Studios

@aaron-tundrapeaksstudios

License

MIT

EZ Stats simplifies your statistics needs by offering the following global functions via a sole, auto-loaded singleton script:

sanitize() - Ingests an Array with elements of any type, sanitizes non-integers/floats, and returns an Array[float]

mean() - Calculates the statistical mean (average) of a dataset

median() - Calculates the statistical median of a dataset

spread() - Calculates the statistical range of a dataset

minima() - Calculates the statistical minima of a dataset

maxima() - Calculates the statistical maxima of a dataset

variance() - Calculates the mean-based variance of a dataset

standev() - Calculates the mean-based standard deviation of a dataset

mad() - Calculates the median absolute deviation of a dataset

all() - Calculates all summary statistics above and returns them in a Dictionary

Reviews

0 ratings

Your Rating

Headline must be at least 3 characters but not more than 50
Review must be at least 5 characters but not more than 500
Please sign in to add a review

Quick Information

0 ratings
EZ Stats icon image
aaron-tundrapeaksstudios
EZ Stats

EZ Stats simplifies your statistics needs by offering the following global functions via a sole, auto-loaded singleton script:sanitize() - Ingests an Array with elements of any type, sanitizes non-integers/floats, and returns an Array[float]mean() - Calculates the statistical mean (average) of a datasetmedian() - Calculates the statistical median of a datasetspread() - Calculates the statistical range of a datasetminima() - Calculates the statistical minima of a datasetmaxima() - Calculates the statistical maxima of a datasetvariance() - Calculates the mean-based variance of a datasetstandev() - Calculates the mean-based standard deviation of a datasetmad() - Calculates the median absolute deviation of a datasetall() - Calculates all summary statistics above and returns them in a Dictionary

Supported Engine Version
4.3
Version String
1.0
License Version
MIT
Support Level
community
Modified Date
10 months ago
Git URL
Issue URL

Open Source

Released under the AGPLv3 license

Plug and Play

Browse assets directly from Godot

Community Driven

Created by developers for developers